
LECTURES ON DIFFERENTIAL GAML, f
L PONTRYAGIN

Lecture 1. :g~:i~

We are going to talk about the problem of the pursuit of one

controlled object by anc'.her controlled otject. The vost important

feature of the problem lies in the facz that the future behavior of

the object being pursued .s not assumed to be known. In realizing

the pursuit we must start from information concerning the state of

I the objects at a given time and the knowledge of the technical

potentialities of these objects.

Here we denote the state of an object by x and assume that 'the

controlled motions of the object can be described by the ordinary

differential equation

where u is the control parameter. ; !•

x consists of two parts: 2z -Q Y

J*

x.,= geomet-ical position

x( = velocity.

Equation (1) gives the potentiality of the object by describing

all possible notions of which the object is capable. In order to give

the concrete motion of the object,, we have to specify its in-itial state

x at some moment t und then prescribe the values of the control u

as a function of time.

NA110NAL TECHNICAL

I. This t•ve potentia d f or public
Saand sale; its dfnitributon is tnliaet.d.

il ,?4AIONAL~cHNCAL lFOS~'



DOCUM4ENT CONTROL DATA. R & 0

Stanford Univ'ersity NLSgE

Stanford, California 94305
3 REPORT ToTt C

LECTUJRES ON DIFFERENTIAL GAMES I_____________

Scientific Interim __________

AFOSR 70-1898
6. NO-cc 1 .

C. 61102F iOTHa IMPORT 941t=EW " Wms&

681304

of 196 byte6 ~O t

seisof, ectures on differential gamest ptnod Aresented atiec~ietfcRserh(

devoted to the pursuit-evasion problem.

DD .0110411473 eti7p.ici.



32

In a pursuit problem one considers two objects x and y; the

potentiality of the second object is described by the differential

e luation

(2) = g(y,v)

Simi.ar to (1), here v is a control parameter and y consists of 11
two parts y = (yly 2 ), where y, denotes the geometrical position

and y2 denotes the velocity of the second object.

We assume that y moves in an arbitrary manner in accordance

with (2) and that x aims to catch vp with -.t in as short a time as

possible, using all its technical capabilities, that is moving according

to (1). ahe pursuit is considered to be completed at the instant when

x and y c!oincide geometrically (i.e., xI = yl).

Th1e problem is: if at eac). instant of time one knows the states

,x(t), y(t) and v(t), to prescribe the value u(t) so that the pursuit

is realized in the best way,

u = u(x,y,v).

There is a different viewpoint to the problem: the problem of

evasion, where v(t) is chosen in order to avoid ending the game,

v = v(x,y~u).

Now we reformulate these two problems, the pursuit problem and

the evasion problem, as follows:

_ -ii



Define z __(x,y), durect sum of x ard y.We call z the

S~state of the game &.=F(z,u,v) is the comlirzation of (1) and (2).

The game ends when z hits the subspa,:e M = (Z E RI =1 yl)

of the phase space R.

The problem of pursuit is to find

u = u(z,v) in order to end the game.

7he problem of evasion is to find

S~v = v(z,u) in order to prolong the game.,

,Very many rapers on the pursuit problem have been published,

but not on the evasion uroblem. I will consider the evasion problem

in the next lecture. Nov I vill only talk about the general formulation

of the problems.

In order to obtain some concrete reults, me .ill restrict our-

s~ves to linear problems. %he differential equation of the linear

.differential game is written as follows :

- = ez-u+v

,where a is the n xn matrix t u c P, v E Q, and P, Q are convex

and compact subsets of R. M is defined as before and let L be the

subspat e of R orthogonal to M; L oeM and R = Lmsm

L

Inodr ootansm coceerutwwl etitor
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If AC L and B c L, we say that A is smaller than B iff 3 a

vector a such that a + A C B,

A
a /

translation

II
and '1'e denote it by A ( B.

By x we denote the operator of orthogonal Projection onto L.

-. is obviously a linear transformation. Let us consider the linear

map e , where T is any positive number, and define

- " P ¶O e P

A Q.=A eC Q J
In order to get a positive solution to the pursuit game, the

control parameter u has to have certain :'superiority" over v.

Similtrly, in order to prolong the game indefinitely, v has to have

.certain "superiority" over u.

Proposition 1. Assume there exists T > 0, such thato

dim(P¶) = dim(L) = v and QC( P., for 0 < T < T0 . Then there is

a positive solution to the pursuit game in the sense that there ir a

subspace 5) with the property that if z 0C 5, there is a finite

t(zo) such that the game ends before t = t(z 0 ).

'I



Proposition 2. Assume there exist T > 0, p > 1 such that
0

dim(Q,,) = dim(L) = v >2 and pPPC* Qr for Tr (0,ro). Then for

each z ý M 3 3Vt: Z(t) ý M; in other words, the game never ends.

If the conditions in Proposition 2 are satisfied, z(t) can be

very close to H. W'e want to estimate the distance between z(t)

and M.

Define

J(t) = distance between z(t) and M

= [i(z(t))I

and

(t) = distance between z(t) and L

= Iz(t)- n(z(t))I.

W4e have, under certain conditions,

S> E k (0)
[l +'j(t))

where k and m are integers and c, k, and m all depend on the

*game -Atstelf.

Finally I want to paint out that however complete the information

concerning the state of the second object at a given instant of time

may be, it is necessary to spend some finite amount of time in calculating

and evaluating this information. Therefore the above formulation is

not realistic. The way out of this difficulty is as follows: we can

make the pursuit, not of y itself, but of the position in which it

was found a short time beforehand. Thus u(t) is chosen as a function

of x(t), y(t-A) and v(t-A), where A is a small positive number.



Lecture 2

Review: ConsiC-er the linear differential game

()cz - + v

z E R Euclidean space

c: R-4R

convex, compa*t subsets of R

v Q

dim P and dim < dim R

M

L IM

• '"R = I, O•M

Projection v: R -. L

Pr(ec =g c'
Pm e P, Ir• •e

convex., compact

Let us consider the folloving

Example:

Question: If 1) E is a vector space, dim E = v > 2,

2) x y C E are the geometrical positions cf the pursuer and the

evader, 3) x . y satisfy

(2) R+ai=a , la _P,

(3) y + 0 = b Jbi < ,

!)

11
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where a arI b are contro± vectors and at,l*,p,o >0, 4) the game

ends when x = y, then what are the conditions for the pursuit problem

end the evasion problem to have a positive solution?

Answer: If p > u, the pursuit control has sup- riority over

the evasion control; then the pursuit gane han a positive solution.

On the other hand, if p < o, the pursuit control her inferiority

over the evasion control; then the evasion game has a positive solution.

Proof: (xi) is the phase vector of x

(y,') is the phase vector of y

(x,i,y,@') is the phase vector of the game.

he.,state variables (x,i,y,r) can be reduced as follows. Let

I
z =x-y

1l 22

then
z CE, iC= ,2,5,

and12 R= {(z 1 ,z 2 ,z ),

and
.1 = X =2_ 3
z =(X-y)=i = -z

.2 2z = a =- ++a =- z +a

i3 _P3+bz• = -•z + b

and

u= (0,-a,o)

v = (o,0ob)



Hence

P = 1(0,-a,O), <aj P_ )t

Q= t(G,O,b), Ibi _< a

M = (ZI 0 ((o,z 2 z3) v z2 , z3  E

L = ((z ,o,o)), Vz C E

1  

,

2

0~ 1 -1

C 0 -a 0
10 0

00

In order to compute r, etC (a), we solve the fcllowing homogeneous

-differenti al equation

i.e.,
.1 2 3

.2 2Z = -az

i3 3•3

Th~erefo.e,

Z3(t) :e-Pt z3
0

12 -at 2
.- a(t) :e z - PtZ

1 1-te =azt Z_____ z3
tl(t) : 01 + a- e• 2 l-e-P zo

tc I- e e-e =[, (

a1



0O -aT

xe(-a)= (-a)
~0Ia

Therefore

rt = 1lx e a )
Q = fl ,1-, e 1

pFo = (xl < -p +

Q•= Clyl _< ,, + -.

Therefore if p > a, C( P. , then 3 a solution to pursuit problem,

dnd If 0 > P, > 1 ai*P~Q.., then a solution to evasion problem.

41
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Lecture 3

Review:

E = Euclidean vector space

diii(U) v > 2

x,y E

i+czi a, Is I <P
b b positive numbers

+ b1-, -- , I

2 .z =x

12 =II-

I =•:- (z'(z "z )I

.M = {(~ •,~}:{z2,z3)] .
" L = ((zl1 ,oO)] (z1)

=• (j: ' crl r + p- *..] j

I Let us consicder the f'ollowing two cases.

1) a ." p , then the evasion control has superiority over pursuit

control.

I

I
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Proof: Iz-(t)I = distance between z(t) and M(t).

I(z 2(t),z (t))l = distance between z(t) and L(t).

(1 + I¢ (t),z-•ct))l)13

if Iz' (o) l< E, where E > 0 depends on the game, i.e.,

!•(I-yt~l> ejx(O)- y(O)1 2

xo)-y(o)l< _ . 2

, • .. 2 z2
oiviko;si' z I (t'. ae solution is

tz2(t) e-0• z 2 e-O(r
= + f a(t--•)d'r

I0
Ag t -.co,) e z0 -,0Oso00

t

t e a t-T)dT

0

if t >>1. Hence

Similarly
S~m~r~yi*(t)I <

Terefore, Ix(t)- y(t) > y1x(O)- y(O)j2, for some y > 0, when

Ix(o) (o)i I S_-
If jx(O)- y(O)j = E , the above is true and we see that

>

~i
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If 'x(O)-y(O)J > E anrd 1xYt)- y(t)J > e for all t, then

jx(t) .- y(t)I > YF2. I
If Jx(O)- y(O)1 > S and 1x(t)- y(t)j = e for some t,, then,r

by the above result, we have jx(t)- y(t) > 7F-2. Hence we get the

following two cases

(1) if jx(o)- y(o)j > E, then Jx(t)-y(t)' > Y .2

(p) If 1x(O)- y(O)J < s, then <x(t)- y(t)j > 71j(O)- y(O), 2 .

In either case the gsme may last forever.

2) P > a • Let us consider and . As shown above,
charaeterizes the range of the velocity of the puvxuer, and 0_

characterizes the range of the v-EiociTy of .he evadehr. .lhereforc,

R < S the game may le.t forever,

R > the game may be ended.-

My next lecture will be devoted to the evasion problem.

In order to show how PT and Q-, are ccmpared to judge whether

"the game may last forever or may be ended, we solve the following

equation : t

c =c+ V(t)-u(t)
(*)z(o) z

and look at iz(t). The solution to the corresponding homogeneous

equation i = cz is z(t) = e c . Let the solution to (*)

z(t) = tc c(t), then



e (V=(t) -UMt )

t = &tcvvst) -s))t)

0

t

Z(t)j e tezz + et f e-SC(v(s) - u(s)ds
0

tc z0  0 vtt-l- ¶ed T

=re~ z + f1(i fe~Cvti ~
0

xe- V(t,.T) c Q

e -CuI-r



SLecture4
Consider the linear transformaticn g e : R -i L. Let us denote

it by

gl g2' "p

v vv

S,,

Each of the elements is an analytic function of T for small T. It

is weU known that g is nequivalent" to a matrix G(¶) , in the

sense that

(2) g = ACI)GC•)B(T),

where

15) q•} KI K 2
I I e O.K

*p

and IA(0)I /0; IB(O)I /0 %'A, B nonsingular for small. T), where

IA(0)I det, A(0). LeL

c(¶) = A '(¶)

D(T) = B -1()

then



(k)G(T) =C(T)grD•)

ic(o)l /0, ID(o)l = 0

Since each i is analytic, we can write

39

g- L = a + b + ,

where a / 0.

The interchange of two rows or two columns can be expressed as

Spost-multiplication by a ,ion-singu-ar matrix, for instance,

gI g2j~ g2i g2'"2 2 2

Consider the operation

I I h-+ hg~

" 2. 2 +h 2
g" g 2- 0 g g2 +~

"Set g 2 +h =0, then

1 1[I gg 21
Hence the matrix of the form 2 21 can be transformed into one

g1 g2

of the form [ by multiplication by a non-singular matrix.

1~2 2

VIg
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By repeated application of the precedLig observatI'ons and similar

ones about pre-multiplication, we see "%hat g can be transformed

into

0 0 . .. 0o

g2

0 "0 :-

Consider the operation I
1 1 [h 00K Ij
0 2 h 0 h1  0 2 0 2[~JL I[JLJ

l= '~a +b¶+ .--. .

'Let 11 =l/a+b-¶+.

"- ITerefore, the above claim is proved:

g= A(T)G(¶)B(T)

Let y =A(T)x, then p <4 < q, where p and q are two positive

constants. i

Theorem. 1--t P= (all polynomials f(a,f)Iin two variables

such that deg f = m, with at least one of

the coefficients equal to +1 or -1] ,
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Qa = ) a(,)I a_( < %z, p, _p <_ 02)
and

A(5)= a square with dimension 5.

Then :--b>0 and o >O for all f E P there exists A(5)

. (depending on f) such that

If(a,p)I > a , Ac,~ t) ,and V f(ct,p) p

Proof: Consider the compact subset Q C p defined by

Q = (flu,p) 6 Pithe absolute value of every coefficient < 1]

It can easily be shown that the conclusion is true for P 'replaced

by Q. Then consider arbitrary f(Cz,1) e p-q . Let

a = maximum of the absolute values of the coefficients .of1 1(C,),

then'-a >1. Then

f(a, 13)

"-Hence
f(a,) > a v(a,) e ()

a

ITerefore

Ii(ap)I > aup> et, V(a,h3) E &(6)

1I1uis completes the proof.
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Corollary. Let = [f(a,P)Jat least one of the coeffitcients is

+ a or -a, deg I = m).

'then '!3 > 0 and a >0 a for aUl f c P there exists 6(5) such

th~qt

3 >cI

LI
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Lecture 5

9beorem. Consider two polynomials

a2 tk tk
x(t) = a at+ a 2  + ' + ak k t

2 1y(t) = b + bIt- +b 2 t + + bbIt + Ot

Suppose

Iail < K lak +C(! _K

where K is a positive number. Then there exists 8 > 0 such that -

jx(t)l + iy(t)I > c(lal + 1 ik)

V ¢eP.) A•_ ) end t e [0,1]

ftemark. (x(t),y(t)), t e [0,1] defines a curve in the (x,y)-plane.

Ix(t)I + Iy(t)I is an estimate

of t!he distance between the point

(x(t), y(t)) and the origin (0,0).

Proof. Let us denote the discriminant of the two polynomials

x and y by

S= •(a,P).
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From algebra we know that if g = 0, (x,y) passes through (0,),;

if q 0, (x,y) does not pass (0,0). We now compute (

Multiplying the first polynomial by l,t,t2,...,t and

multiplying the second polynomial by l,t,t 2 ,...,tk-l, we have-

k k Ik-A+
a + ait + + aktk + (Xtk+ 0.th~ + + 0.t+-I

0 att 2  + k+l +k+l+.. + O.tkA-1 l xt

0 + + 0 + at -I . + akik+1-i + Ct k+-I xt -1

and

b + bit + b t + Pt + + O.tk+- y

Z' 0+ bt +--- + bt+I + at+l+ •-.+ 0.tk+• -I =yt-I :k-i k-i-A-i k+-l-- k-i0+ .-. +O+bt + + b t + at yt

We consider the above equations as a system of simultaneous alge'craic

-" equations for the variables l,t,t 2 , ... ,tk+'-l. Fro elementary algebra

we see that

where j is the coefficient matrix and & is t with the first column

replaced by (xxt,...,xt , y,yt,...,yt ).

I _______________________

L
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I k k I

c Ia

(b k

Using the la-ma we mentioned in the last lecture, we obtain

I ! > , if ( E,•) £ a certain square A'(5)

(,9 > c{bk , it (a,p) i a certain square ()

Hence
I..I >-iacop) > 'lal+ llif ,,) e C b)

2''

where &(B) = A'(b) or A"(b) according to whether janl> lb lk

or jai' bi jk . oben we have

{" • ¢lja-l+ lb{i•

SSine: tll 1, ve have jxlt < lxi, Iytjj Iy. On the other
hand, any minor of order k+J-1 of {•is bounded by

{k+1-l)K Kk+1-1

S< (.Ilx + klyl)(k41-l):!K+-

I|
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which implies

Consequently,

I-XI + 1S > K,_ck+I.

for some constant C > 0 as desired.

ii I.



~=

I. t I
L• cture 6

Here -we only consider the case where g is a square v X v

matrix

9r A(¶)G('T)B(r), det A(O) / 0 , det B(O) / 0

A simple calculation yields

t

f A(t)G(()dA•*= (t)G(t)
0

ahere det A(o) $0 and 1*
K 1+1

t 0

ty

Consider a vector q(p.) with componentcs q satisfying Nil < c-,

c 0. Again a simple calculation yields

t

0

vhere i(t)I_< ct, if 0 < t < p, p > 0, where- p depends only on

ii
A(T)
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Now let us continue the discussion of the differential game.

We assume z(to) Js very near to M. Our purpose is to prevent

the ending of the game in the time interval [t ot 1 ]. Let us assume,

without loss of generality, t = 0 and tI = 6.

We now rewrite the equation of the game as

=z + v' -' U, u' E P' and v' CQ'

in order to save the notations v and u for later use.

Recall that a ccndition for the evasion problem to have a solution

is that dim( Q') = v. We make this assumption here. Hence,

" "': ~dim(Q')>._i

We will consider only the case dim(Q') = v to illustrate the idea

of proof.

Obviously, 2 affine subspace u' such that P' C U'

dim P' = dim '. %ben 3 u C U' and a linear subspace U CL
0

SU' =u +U•

If we choose u° c Int(p'), then P' = u0 + P and 0 e P. Similarly,

3 affine subspace V' 3 Q' c V' and 3 v 0 V' and a linear subspace

VC L 3 V' =v + V and Q'=v +Q.

Defineet-

(u)=nx e u, U cU•

TC V
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Notice that gc is non-degenerate (non-singular) mapping: V L,

by our assumption

ditm(Q') vdim(L) ,for T > 0
TC p, Tc

Pi e.e -P----- ef(P) 4 gT(Q)

Define

hT= rý- f >0i•

Hence
p.,(P') C* Q.

-1

Notice that each element of g1 can be expressed in the form

... + + +

there K may be negative. ¶Fierefore hT might have a simila-r form.

If this is the case, a U C U 3

IhT~u) I -a, 0, as T~

But phT(P) C* Q and Q is compact, so we obtain a contr-adiction

and thus we krow that h,(u) is an analytic function of T even

at T = 0 and h. has a definite limit at T = 0. Hence it is

possible to choose vo9 pho(P) c Q_ But pho(P) c- Q -> ho(P) C ac Q

so we can find w e V with components 1wihIy, y > 0 such that

Hence

ho(P) + V C q

V0
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Let us assume we have a pursuit control. Consider the evasion

control v(t) h h(u(t)) + w

First~however., it is necessary to do the following computation

g..(v(t-¶)) - t¶(u(t-¶)) =g,(v(t-T) - h,(u(t-¶)))

C g(h 0(u(t--1))+ w - hTutr

=g,(w- (h,!-110 )ku(t-r)))

A(r)G(r)B(r)(w- (he-ho)(u(t--r)))

=A(r)GQF) (w(¶) + q(t,r))

f A(1)G(¶)(v(r) + C(t,r))dr ="()-()vt pM

0 I
!Ibis will be used in the :future.
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Lecture 7

As shown in the last lecture,

t

f (g,(v(t-r))- f£(u(t-r)))dr = AM(t)CMt)(w + •(t))
0

A.4

TC + f (it e (v (t-r) - e u'( !t-.))dr

0
rc t et c-- e zO+ f (•t eC(Vo+v(t-r)) - • e (uo+u(t-i))d•r

0

t t[
"= i. e z + f a e¶C(vo'u )dr + R(t)G(t)(,v+ q(t))

0 O~I-

For t <<i, A(t) is non-singular, so

(6) A (t)x z(t) = w(t) + G(t)(w+ S(t))

where- t.--l~t( TC e TCvood
(t) = A (t)(e -z0 + I e "(v0u0 )d'r).

0

Note that w(t) is a linear function of zO. Since A(O) is ncn-

singule.r, we can take a system of coordinates in which A(C.) = 1,

then we have w(O) = z Observe that (6) contains v scalar equations.

Any one of them can be expressed in the form

x = f(t) + t kv(t) + tk(a 0 + *(t))

tpolynomial of degree k

= f(t) + tk(a0 + al(t))

= f(t) + tk a,
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where

a=a a a,= 7(t) + *(t)

kf(t) = a + at + ... + akt

Consider the mapping z -( where J = A(z)j and • = Iz-n(z)j.

In particular, z0 - o. Since we assume z° i very close to

Y, we have o (1. Hence we obtain the following inequality for the

coefficients a. ,

Jail p( + ,1. i 0 ,...,k

f6r'some p > O. And analogously we get

15a(t)I <tp(l + Tjo)

p 0> , the same p as above. It is necessary to assume

0
-11t < 0' eo>0

If e0 is small enough, then al(t) sma-1i enough. O° will be chosen

later. Now 0 is regarded es a ftxed number. Let e =

And the coefficient of the last term in the above polynomial of

x satisfies ttlak + ai <_ p(1 + lo.

Now let us introduce some new terminologies,

z 6 L , z =(zI 12 ...zV)

zEL,

I1
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It is easy to see that 3p, q 3

IZ! >pl:l ov i> P t ,12 ,

and
iil > qlzI ,for at least one i

Consider the instant t =

x =f(e) + aek

We consider two cases:

1) () : < a < -y IX1 > ek1) f(e)>o-, :¼- -7 ' x>- - ,

We have different controls for these two cases. Now we have

and

a(e) > k

We now co)nsider the second equation

y =g(t) + t~ J<k.

Applying the theorem we mentioned in Lecture 5, we have

<) (a<_7 -7< <3_ _
2---"

2) <7 (a < -

I2
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Therefore b', B" >0 3

%(lal• +Ibk)
IxI + lyl >

Let 6 =min(BI,b").

c +( .i >+

where K is an upper bound of the absolute value of the coefficients

of the x,y polynomials. I
xIx + y C l IbIk)

S-I(p(l + ° - 2k-1

(an estimate of R)

Hence k
E(t) > 2k-1

(14%

JI
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Lecture 8

At the end of -the last lecture we got the two following inequalities:

x
(1) g(e) > k

(1 + T

k

(2) E(t) > 2k-1
(1+ + )

But the-e inequalities are not interesting since they relate •(e)

or t(t) with no andnotwith q(t).

To remedy to this, we wili use the following relation:

-.7 I-,(t) > S(I + jO) for some S.

SThia can easily be sho,,n by using the fact that for t being small

z(t) - z(O) is bounded. 'Then

X S~kX(5 ., {8)> (I l~ sk(l + >o) -(+•()k

with E:= sk-. To interpret this result, consider the hypersurface

= It divides the phase space in two parts:

the interior part S = <zj k
-(1 +( • n)k'}

the exterior part S+ = >

Our result tells us that at the end of each evasion process z(e) e s
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If we start outside (i.e., in S+), then as long aa we are in S

we don't worry. Mhen we reach the hypersurface S we turn on the

evasion control and we take this time as the origin of time. Then

E
z C S , i.e., o (1+ o)

By inequality (2) we have

ck

k+ 2+2k-l

and by the same argument which was used to get (3),

:> 2i•.. -LOP k +2k-1': " " (1+ q(t))

k
Let us introduce the surface S': : ++2k-1

1+

where S' and S' are the exterior and the interior of this surface S'.+

.So durin all the time we apply this evasion control we know that our

point remains in S'+ ; at the end of th 1 .s interval of time we have

"(1) again and so our j.oint is back in S+ , and we can do the same

maneuver again.

Now what happens if z e S. Then, during the first interval

of time [03e] we have, from (2),

k ,k

+(t) %) + (2 40) 2k-1

(l1T
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This means that there is no capture betwcen time 0 and time e,

and that at time 0 we are back in S+, and we can act as in the

first case.

These i-esults are more precise than the one stated in the first

lecture. We can resume them in the following resu] , which is weaker

and true only if to : F

k
o00

tt >00

(I + il(t))k2k-1

But the proof is not yet completed: there remains to check that'

the'.-um of the different intervals of time 0 is infinite, in other

words, that we have considered the problem for every t > G.

e is defined by e = ,where 0 is fixed.

If remains finite. then 6 is bounded from below and the

series E B diverges.

if io becomes infinite, then as i ist at most linear in 0, the

series still diverges.

The proof is yet completed.

Comments. The solution was based on the maneuver superiori.ty of the

evader, but the pursuer can have a speed superiority. If at the beginning

of the game they stand very far from each other, the evader cannot prevent

the distance to decrease and the evader to pass very near from him, but

then the distance will increase again.

It is not clear why our estimates are bad when -q is big. In the

example where 71 represents the velocitice, this seems intuitive.
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'Lecture 911 A

The Pursuit Problem

General rem'iarks on the non-linear case

As previously, we have a euclidean vector space R, and a

vCctor z, z c R, whose motion is given by £ = F(z,u,v). The game

is completed when z c M c R, M is a given set in R.

Rules: Three types of rules can be used, depending on the available

information at time t to choose u(t).
A

1) The state only is known: u = u(z).

2) The state and the opponent's control are known: u = u(z,v),

-V where v = v(t).

3) The state is known, as well at the opponent's contrcl history

for a short interval of time in the future: u = u[z,v(s)lj,

where t < s < t+E, E> O.

The third rule has also a practical meaning. We shall use it later.

Questions: For any of these three different games there are three

questions to answer:

1) Starting from a given z0, is it possible to complete the game?

2) Find the time T(zo) -which is sufficient to do so. This nunmioer

T will be called tne estimating number, cr, regarding it as a

function T(z), the estimating fvnction. It is the interesting

thing to find.

3) Is this T(z) the best possible estimating function?

If there is no positive number 6 such that T -6 is also an

estimazing number, then T is said to be optimal.
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This optimality means that it is possible to find a ccntrol

history v(t) such that the pursuit will last a time arbitrarily

close to T. It must be understood that this history can depend

on everything else: u, the past histcry of the g..me, .... If

there exists an evasion rale such tha& the process lasts exactly

the time T(z 0 ), then this function is said to be a "Etrcng

optimal" estimating function.

Thus we have defined three coicepts: the estimating function, the

optimal estimrating function and the strong optimal. Thereafter we shall

consider only the first one.

Construction of the function T(z)

Given the evader's control from zero to c as

V = V(t) 0 t < E,

Consider some control u(t) for the pursuer.

We place these control histories in the differential equation of

the game:

÷= (z, u(t), V(t)), with z(O) =z

This gives & solution which we call z(t) and, in particular, this

gives a z(E) = z which depends on the u(t) we have chosen.

Now consider the values T(Zo) and T(zl) of the function T(z).

The difference T(zo)-T(Z ) depends on the history u(t). Among all

these possible histories, choose the one that maximizes this difference.

U(t) = arg maxfT(z T) -(zi) i .
u() 0 v
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If for this function u(t)

T (z)- T(z 1 ) _ ,

then T(z) is an estimating function. This also gives the way to

construct the best possible u. k

Comment on Isaacs' work,

Isaacs assumes that T is continuously differentiable, and j
;I

that it is a strong optimum. Then letting E go to zcro, our relation

becomes his "main equation". But there are cases where T does not

fulfill these conditions.

Remark: In the case where the third rule is used (v is known a.I time e in the future), the function T (z) we are looking *for Diigift

depend on E. We require that the finction we find be independent

of c and hold for every positive c. For the linear case we are .I

going to construct the function T(z) a priori, without the help of

an equation, and then show that it is an estimating function.

Linear case.

We consider now the case where the differential equation of the

game has the form

z= cz-.v-u,

where v c V, u e U. V and U are compact convex subsets of R.

Completion is obtained when z c 1-1 arbitrary convex closed set.

iR. saacs: Differential Games, John Wiley and Sons, 1965.

I
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We shall ncv construct , for positive r, a set M such that M -- M;

and M is a continuous function Cf T and coilsidering, far a given z,

the expression eT z, we focus our attention on the inclusion (1);

verified or not

(i)e M

We u'-all prove that T(z) = To, where T0 is the smallest -r such

that (I) is true.

Construction of M . Particular case: M is a vectorial subspace.

As previously, L is the orthogonal complement of M, it is the orthog-

onal projection on L. We shall construct a subset W c L and define
S " -

M=( z: Rz E W) with W =0Oi

0I
so that relation (1) is equivalent to

Xmle ze W

:Definitions: Let us define several concepts in set theory.

Generalized addition: Given two convex subsets A,B c L and two

[I numbers a and f, define

D = aA+OB by D• 6(ax+gy zx-_- A,ycB)•

It is clear that D is convex. If A and B are compact, D is compact.

Notice triet -for a = 0 = 1 we have the classical su-n and for a = -=

we have the algebraic difference.



38 V.

Distance between two sets: Let H denote a ball of center at
r

zero and radius r:

Hz A (x: 1j1xf_< r)

and consider the two inclusions, always verified for some large enough r,

AcB+Hr

r

B cA +H r

We call distance between the sets A and B the smallest r such

that these two inclusions hold.

"Integral: L being a finite dimensional euclidean vector space,

and K the set of all compact subsets of L. (But /• K) K is not

a vector space, as no set except from (0) seems to have an additive

inverse. It could probably be imbedded into one by considering formal

differences

A- B, A,B e K.

The fact that this is a Banach space should be checked. It is complete.

Thus given a continuous family AT, A e K VT, one can define the

integral
E = f A dT.

0

Theorem: It is knc...n that, given any y e E, there exists a

family x(-) such that x(-) c A Vr, and

t (y f x x(-) 1-r
0



Now if y belongs to the boundary E' of E, then the corresponding

x(T) belong to the boundary At  of A for almost all -.

Geometric subtraction: Given A and B, two subsets belonging

to K, define

A_* B = D by D D31_ ( +x B c: A)

If this set is no'. empty, then it is compact and convex. D is a

function of A and B, D(A,B), but it is not defined for all A

and B. Notice ttat by its definition D = A * B is such thac

SD+BcA.•

Continuity: The question arises of knowing if this function

D(A,B) is continuous. The answer is that given A and B if0 0

dim(A_ * B )=dim L = v,

""then Ae function D(A,B) is continuous at A0 , B0 .
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Lecture 10

We shall use the operations previously defined to find the esti-

mating function in the case where

jU e F I
z = cz + v- u convex compact e'ubsets of R

Completion for z c M M vectorial subspace of R
L orthogonal complement of M

r is the projection from R onto L, and as previously,

P &=reTp Qr , e 'i Q. j

Condition for capture: In the first lecture, a condition had been given

under which capture can occur. We give now another form of the samc

condition. Let S be

Our condition is dim v = v V small r > 0, or more formally, for

all -: 0 < T < r for some T, possibly infinite, and we shall

always consider a -r belonging to this interval.

We constiuct the set W, defining it as

W.=f S dr

0 r

The estimating function is now defined by means of this set. Zon-

sider the inclusion (1), which can be true or not,



(1) ,re z C W

and call To the smallest T such that it is verified. We claim

that T(z) =

Remark: 'L" = 0, this means that

itzoWo = [(0)

This means that z belongs to M, the game is finished, which is

consistent with the result T(z) = 0.
F 0

Proof of our claim: We shall first consider the second term:

wz fSdr f Sdr+f s r=w ÷ f sdrT 0 dr = f r TEr "-• - r :

provided that T-E > 0.

Let us now look at the last integral:

S P -*Q erc P A er Q

implies, as seen earlier,

S +seen c r ereP.r

It is easy to see that such an inclusion cam be integrated,

-U -
rc &rrf (Sr+ire Q.)dr c :J" ne Pdr.

T- -E T-- E
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From the definition of the algebraic sum it is clear that the inclusion

still holds if one of the two sets on the left side is repleced by oue

of its elements.

Notice that v(t) is known for 0 < t < e, so that v(-r-r) is

known for T-E < r < r and belongs to Q. So we can write

T T T

(2) f S dr + ire rov (-r--)dr cf it e'r Pdr.
rc-- • -S anwrit

Let us turn now to the relation (1), 3e z C W . We can write

it as follows: 0

-V :.eIre z +f -Eere vr(--r)dr e W -r it ere v1(--r)dr.

and making use of (2), we have

(3) 0 e Zo÷f iree v(r-r)dr E'W + f iterPdr.
T-FE

-This relation is verified for -r r ; but it might be true for some

smaller -r. Let us call -r the smallest T such that. (3) is true,

<9

IT T,rIC T1 T1

ite z+f .re v(-r)dr• e W +f v e rP d

From relation (3) it follows that there exists a function u(T -r) e P

defined on the interval [0,sI and such that u(l-.r) e P, Vre [-,--,FI]

and such that

T.IC 1 rc e
i.e Zo+f n r v (V-r)dr e W. +f i re u(rl-r)dr-

1_0 1 •,•--•-•., -- •-- .
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U(Tl-r) is nok any element of P, but it is defined by this relation.

Tnis last relation we rewrite as

a e 1 zo+f i eM[v(¶-rr) -u(Tl-r) 1dr W _

and we modify its left side in

(T )• •1 [r- (.I-_s)k.c[V(¶lr)-

x e feEC zo+ j e -r- (T.-r) ]dr"

* Then we make the change of variable of integration s = r- (-E).

This same term becomes
S1

(- E)e"-)c FE 0
.. ire (e V +1 e Cf (E--s)-u(E-s);ds) =n e z

where z- is by definition the quantity between braces. It is clear

that z is also tY-? value z(E) of the solution z(t) of the dif-

ferential equation of the game, with initial value z(O) = z° and

applying the ccntrols v(t), which was given, and u(t) that we found.

Our result is

*• ('rl-c)c Ol

ire zI - C

This relation means, with our definition of T(z),

T( z) < -I-

Because TI is the smallest r for which relatior. (3) holds, it is

possible to see that actually

-~T(z 1) = !
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We now check the relation that a function T(z) must verify to be an

estimating function

To - T(z) -1) T i + E,

and because as we have seen, F1 < TO,

T(z)- 0 T(z1 > E.

So T(z) is an estimating function.

It can happen that the difference will actually be smaller

than E.

!"J . ,
Remark: Our function T(z) is defined independently of E,

and the result holds for all E > 0.

It would be intersting to find what happens for e going to

zero. It might be possible to find a u according to the second

rule instead of the third, namely, with the knowledge of current

state and opponent's control, but not of its control in the future.

May be we could fiiid soc bound on E. This question is not solved

yet.



Lecture 11

Before giving an example of use of the previous theory, let us

make some remarks about the geometric subtraction.

Remark: As previously, let Hr be a ball of radius r and

center 0. It is easily seen that

H =H if s <-.Hr - s r-s

(Given a function r(T), real parameter T, it is easily seen that

t

0 r(¶r) -r

with,'r

i(t) = f r(r)d-.
0

SiExcample of pursuit process.

We consider the example used in the evasion process: In a

-euclidean space E of dimension v > 2, a point x (the pursuer)

and a point y (the ev.4er) vary according to the dynamic possibilities:

S+ b -11 bIIll < c

aX, , p and a are positive numbers. The game is completed when x =y.

We put this description in the form of a differential game, as was

done earlier, defining the state z e R

z = (z 1,z 2 ,z 3 )
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3.z =x- -[ :

2 3 2 3
z = z , and z are components (not coordinates) of z.

z3 = 5
The subspaces M and L are defined by

14 = ((O,z ,23). , L [ ((zoo)I .

There is an obvious isomorphisin between L and E, and I, will be

identified with E thereafter. The projection o will be considered

as a mapping of R on E.

We have already sho.,n that

T(" J1 Z2,z 3) z (z 1 E E, not L).

The operator -r eTC, firs'. line of the matrix e c, is

ie f=T

-rcc (I 2213)
ire 2 0 t .e z ,z 2 z3  2. 2+ f(-)_- z03

and

P txl !Ix _ p f(-) , Q. = (xj Ixil < og(¶-))

where the tiro fiunctions f(-r) and z(L ) are

f ( ) 1-0 e-•r-l•r
fr)3 'e __)_-= x = jj

!I
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Remarks about the functions f and g:

f(o) = g(O) = 0

i(r) = e e-1r

f(O) = A(0) 1

.e will- also need thcA r limit for T -, co

=•m , - lim g(T) =

"T -3. 00 -4 -)OD

Geometrical difference

S P _ Q ( I { jxl lil < h(-T)) ••

vyq.l h(r) p f(-) - ag(-).

Because the difference is not defined for h(T) < 0, we must

look attbis function.

h(Oj= 0, h(c) =p-> 0,

"since,; by assumption, we are in the case where the pursuer has

maneuvering superiority over the evader: p > o*4 (¶)= -pe~ -S'

h(-C) 0 for e-(a-)¶ -r one point at most

and looking at the limit
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urn hr' - 0'
' a 13

we distinguish two cases,

-P - > 0 h(¶) is always positive and greater than some
a ~

positive constant for r greater than some positive

value.

-P < 0 There exists a unique positive i suci that
131

h(-u) =0 and h(T) > 0 for 0 < T < .

Set W

We have

.r= f sr = 'h(.) a spere,
:," 0

where

h(E)= f h(r)dr •
0j

II

Estimating function

The inclusion jr e z e W can now be written as an analytical
o T

express4 on since both sides are known

Z1 + f (-)z2 _g(-r)z~fli < R2 (_),I

and -ro is the smallest T for which this inequality, holds. By

continuity it is clear that for '% we shall have the exact equality

1Z + _)z2 g- )z3112c 2 T
0 f 0  h2(go)0  0o=

And T(zo) =ro -ro being the smallest root of the above equation.
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which verifies Isaacs' "main equation" (Partial differential equation).

S~But then it has sever-Ll values, and insisting on choosing the lowest

positive one may leai to discontinuities in T and its derivatives.

So the hypothese 3 on which Isaacs' theory was built do not hold

here. Moreover, we hive an explicit-solution instead of a partial

differential equation.

Let us look at the ,ase where the relative value of the limit

velvcities is,

Then h(T) co, where -r - , so that, '-iatever be z 0 , there exists

a -r positive such that the equality is verified. So the ganme shall

Salways be completed, capture will occur fa any starting position.

It has been proved by Nikolsky that for a rather restrictive classI
of games, containing this one, this estimating function is also optimal.

Remarks: We kr& w from the general theory developed ear-ier that

the function T(z) we have computed here is actually an estimating

"function. We have also given the construction of the best possible u

in the ger.era! case. In this case we can give a different, but very

simple, c~nstruction of u which ensures capture in exactly T(zo).

This con:.truction will not make use of the knowledge of v at a time

greater than current time. But it will also not take advantage of the

possible "mistakes"of the evader.
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Consider the inclusion

I Tc o
it e zc S dr

means that there exists a measurable vector function s(r) such that

4re 0 o 0 s(r)dr s(r)V Sr Vr. -

Now the definition of S is such that

S rc rc
r

which means

s(rN+iercv e ire re VP S C ,S VvEQ,r r

"so for any given z 0 -(=-> given s(r)) and any given v there exists0

a u e P such that

s(r)+Arev r u

If in this equality we put for v the evader's control v(r o-r), then

it gives us a pursuit control u(T 0-r). Thus we have

0 e

and integrating from zero to 7o, taking 3T out of the integral,

nfe 0 zo + f ercfv(T -r) - u(-r°-r) 1dr) = 0
000

which means that z( U) C M. Q.E.D.
0

Note that this does not take advantage of possible mistakes of

the !:vader.

P*


